Effects of Radiation Exposure on SRL 131 Composition Glass in a Steam Environment

Author:

Wronkiewicz D. J.,Bradley C. R.,Bates J. K.,Wang L. M.

Abstract

ABSTRACTMonoliths of SRL 131 borosilicate glass were irradiated in a saturated air-steam environment, at temperatures of 150°C, to examine the effects of radiation on nuclear waste glass behavior. Half of the tests used actinide and Tc-99 doped glass and were exposed to an external ionizing gamma source, while the remaining glass samples were doped only with uranium and were reacted without any external radiation exposure. The effects of radiation exposure on glass alteration and secondary phase formation were determined by comparing the reaction rates and mineral paragenesis of the two sets of samples.All glass samples readily reacted with the water that condensed on their surfaces, producing two types of smectite clay within the first three days of testing. Additional crystalline phases precipitated on the altered glass surface with increasing reaction times, including zeolites, smectite, calcium and sodium silicates, phosphates, evaporitic salts, and uranyl silicates. Similar phases were produced on both the nonirradiated and irradiated samples; however, the quantity of precipitates was increased and the rate of paragenetic sequence development was accelerated in the latter. After 56 days of testing, the composite smectite layer developed at an average rate of ~0.16 and 0.63 µm/day for the nonirradiated and irradiated samples, respectively. These comparisons indicate that layer development is accelerated approximately four-fold due to the radiation exposure at high glass surface area/liquid volume (SA/V) conditions. This increase apparently occurs in response to the rapid concentration of radiolytic products, including nitric acid, in the thin films of water contacting the sample monoliths.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference13 articles.

1. Durability of simulated waste glass - effects of pressure and formation of surface layers

2. 8 Wronkiewicz D. J. and Bates J. K. , “Alpha and Gamma Radiation Effects on Air-Water Systems at High Gas/Liquid Ratios,” Submitted to Nuclear Technology.

3. 7 Wronkiewicz D. J. , “Radionuclide Decay Effects on Waste Glass Corrosion and Weathering” (this volume).

4. Gamma Radiolysis of Aqueous Media and Its Effects on the Leaching Processes of Nuclear Waste Disposal Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3