Irradiation Spectrum and Ionization-Induced Diffusion Effects in Ceramics

Author:

Zinkle S. J.

Abstract

AbstractThere are two main components to the irradiation spectrum which need to be considered inradiation effects studies on nonmetals, namely the primary knock-on atom energy spectrum and ionizing radiation. The published low-temperature studies on A12O3 and MgO suggest that the defect production is nearly independent of the average primary knock-on atom energy, in sharp contrast to the situation for metals. On the other hand, ionizing radiation has been shown to exert a pronounced influence on the microstructural evolution of both semiconductors and insulators under certain conditions. Recent work on the microstructure of ion-irradiated ceramics is summarized, which provides evidence for significant ionization-induced diffusion. Polycrystalline samples of MgO, A12O3, and MgAl2O4 were irradiated with various ions ranging from 1 MeV H+ to 4 MeV Zr+ ions at temperatures between 25 and 650°C. Cross-section transmission electron microscopy was used to investigate the depth-dependent microstructure of the irradiated specimens. Dislocation loop nucleation was effectively suppressed in specimens irradiated with light ions, whereas the growth rate of dislocation loops was enhanced. The sensitivity to irradiation spectrum is attributed to ionization-induced diffusion. The interstitial migration energies in MgAl2O4 and A12O3 are estimated to be ≤0.4 eV and ≤0.8 eV, respectively for irradiation conditions where ionization-induced diffusion effects are expected to be negligible.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference56 articles.

1. Calculations of the ground and excited states ofF-type centers in corundum crystals

2. Cation disorder in high dose, neutron-irradiated spinel

3. Neutron irradiation damage in MgO, Al2O3 and MgAl2O4 ceramics

4. 43. Yasuda K. , Morisaki R. , Kinoshita C. , Abe H. , and Naramoto H. , Proc. 7th Int. Symp. On Advanced Nuclear Energy Research (in press); Philos. Mag., to be submitted (1997).

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3