Abstract
ABSTRACTThe in-plane stress in silicon wafers during amorphization by ion-bombardment was determined from wafer curvature measurements using an in-situ laser scanning technique. Measurements were made during room temperature bombardment with 2 MeV Ne, Si, Ar, Kr, and Xe ions. In all experiments, compressive stress was built-up in the bombarded region as a function of the fluence, until a maximum was reached at the dose required to form amorphous silicon. During further amorphization by bombardment, the stress decreased and eventually stabilized. If ion bombardment was interrupted during amorphization, a stress increase was observed over a period of several minutes; when the beam was turned on again, the stress returned immediately to the value measured before interruption. Step height measurements were performed on implanted wafers to determine the out-of-plane strain, and RBS was used to determine the damage profiles. A model is proposed that describes the behavior in terms of the expansion of crystalline silicon by the creation of defects and the flow of amorphous silicon under the ion beam.
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献