Alpha-Decay Damage of Cm-Doped Perovskite

Author:

Mitamura H.,Matsumoto S.,Tsuboi T.,Vance E. R.,Begg B. D.,Hart K. P.

Abstract

AbstractCurium-doped perovskite slurry, which had the nominal composition of Ca0.98919(Cm, Pu)0.0108l Al0.0108l Ti0.98919O3, was calcined at 750°C for 2 h and then hot-pressed at 1250°C and 29MPa for 2 h. The hot-pressed cylinder samples had the specific 244Cm activity of 22.3 GBq·g−l on 31 March 1993. Their average density was 4.083 g·cm−3 after the samples got a cumulative dose of 0.7}1017 α decays·g−l. Change in density of Cm-doped perovskite reached 0.8% at a dose of 5}1017 α decays·g−l. The rate of density change was slightly larger in the present perovskite material than in Cm-doped Synroc reported previously. Half-disk perovskite specimens, which had accumulated doses of 1.6}1017 and 4.0}1017 α decays·g−l, were MCC-1 leach tested in pH˜2 solution at 90°C for two months. The leach rates of these specimens derived from weight losses were 1.7 and 2.3 g·m−2·day−l, respectively. These high leach rates caused a significant increase in pH in the later stage of the leaching runs. As-leached surfaces of Cm-doped perovskite showed the formation of anatase (TiO2). For the first 28 days, the Ca and Cm leach rates at the two different doses increased with leach time. More damaged specimens tended to give higher leach rates. In the final 28-day leaching run, both leach rates at the two different doses converged on each lower values although the Cm leach rate was lower than the Ca leach rate by a factor of >20. Nonradioactive perovskite material showed similar changes in Ca leach rate and pH to the Cm-doped one although the as-leached surfaces of the former material showed much higher degree of alteration of perovskite to anatase.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3