Temperature Dependence of Amorphization for Zirconolite and Perovskite Irradiated with 1 Mev Krypton Ions

Author:

White T. J.,Ewing R. C.,Wang L. M.,Forrester J. S.,Montross C.

Abstract

AbstractA transmission electron microscope investigation was made of zirconolites and perovskites irradiated to amorphization with 1 MeV krypton ions using the HVEM-Tandem Facility at Argonne National Laboratory. Three specimens were examined - a prototype zirconolite CaZrTi2O7, a gadolinium doped zirconolite Ca0.75Gd0.50Zr0.75Ti2O7and a uranium doped zirconolite Ca0.75U0.50Zr0.75Ti2O7. The critical amorphization dose Dc was determined at several temperatures between 20K to 675K. Dc was inversely proportional with temperature. For example, pure zirconolite requiring 10x the dose for amorphization at 475K compared with gadolinium zirconolite. Using an Arrhenius plot, the activation energy Ea for annealing in these compounds was found to be 0.129 eV and 0.067 eV respectively. The greater ease of amorphization for the gadolinium sample is probably a reflection of this element’s large cross section for interaction with heavy ions. Uranium zirconolite was very susceptible to damage and amorphised under 4 keV argon ions during the preparation of microscope specimens. In each sample, zirconolite coexisted with minor perovskite, reduced rutile (Magneli phases) and zirconia. These phases were more resistant to ion irradiation than zirconolite. Even for high gadolinium loadings, perovskite (Ca0.8Gd0.2TiO3) was 3-4 times more stable to ion irradiation than the surrounding zirconolite crystals.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Krypton and helium irradiation damage in neodymium–zirconolite;Journal of Nuclear Materials;2011-09

2. Krypton irradiation damage in Nd-doped zirconolite and perovskite;Journal of Nuclear Materials;2011-08

3. Irradiation Effects in Ceramics for Plutonium Disposition;Ceramic Transactions Series;2010-12-01

4. An attempt to correlate ion irradiation behaviour and chemical durability of titanate- and zirconate-based ceramics;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2008-06

5. Actinide host phases as radioactive waste forms;Structural Chemistry of Inorganic Actinide Compounds;2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3