Modeling of Solution Renewal with the Kindis Code: Example of R7T7 Glass Dissolution at 90°C

Author:

Advocat T.,Crovisier J. L.,Clement A.,Gerard F.,Vernaz E.

Abstract

AbstractThe deep underground environment that would correspond to a geological repository is a system open to fluid flow. It is therefore necessary to investigate the effects of solution renewal on the long-term behavior of glass in contact with water. These effects can now be simulated using the new version of the geochemical Kindis model (thermodynamic and kinetic model).We tested the model at 90°C with an SAIV ratio of 400 m−1 at twelve renewal rates of pure water ranging from 200 to 0 vol% per day. With renewal rates between 200 and 0.065 vol% per day, steady-state conditions were obtained in the reaction system: i.e. the glass corrosion rate remained constant as did the concentrations of the dissolved species in solution (although at different values depending on the renewal rate). The ionic strength never exceeded 1 (the validity limit for the Debye-Huckel law) and long term predictions of the dissolved glass mass, the solution composition and the potential secondary mineral sequence are possible. For simulated renewal rates of less than 0.065 vol% per day (27 vol% per year), the ionic strength rose above 1 (as in a closed system) before steady-state conditions were reached, making it critical to calculate long-term rates; A constant and empirical long-term rate, derived from laboratory measurement, have to be extrapolated. These calculations were based on a first order equation to describe the glass dissolution kinetics. The results obtained with the KINDIS code show discrepancies with some major experimental kinetic data (the long term rate must decrease with the « glass-water » reaction progress, under silica saturation conditions). This clearly indicates that a more refine kinetic relation is needed for the glass matrix.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference16 articles.

1. 9. JSS-Project Phase IV, SKB Techn. Rep. 87–01 and 87–02 (1987).

2. Remaining Uncertainties in Predicting Long-Term Performance of Nuclear Waste Glass From Experiments

3. 1. Règie Fondamentale de Sûreté III 2f. French Ministry of Industry, DSIN (1991).

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3