Author:
Beck N.,Orres P.,Fric J.,Remeš Z.,Poruba A.,Stuchlíková HA,Fejfar A.,Wyrsch N.,Vaněček M.,Kočka J.,Shah A.
Abstract
AbstractWe show that the optical and electrical properties of microcrystalline silicon (μc-Si:H) deposited by the VHF-GD technique at 110 MHz can considerably be tuned by changing the dilution ratio of silane to hydrogen.With increasing silane dilution we observe enhanced optical absorption for energies below 2 eV due to the transition of the material from amorphous / microcrystalline mixture to a pure microcrystalline phase. Simultaneously, the light scattering and the defect absorption increases. Strong dilution also promotes the incorporation of impurities into the material, leading to a pronounced extrinsic behaviour as seen from the decrease of the activiation energy of the electrical conductivity.The electrical properties were investigated in the dark by the Time of Flight technique. We measured drift mobilities at room temperature which slightly increase with dilution, reaching values of 3 cm2/Vs for electrons and 1.2 cm2/Vs for holes. The ratio between electron and hole drift mobilities is found to be around 2 for all samples studied, similar to that of crystalline silicon.Furthermore, post-transient Time of Flight measurements revealed detrimental electron deep traps in low dilution material.
Publisher
Springer Science and Business Media LLC
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献