Electrical Characteristics of CoSi2 Layers Formed by Mevva Implantation of Co into Si

Author:

Peng Qicai,WONG S. P.

Abstract

AbstractHigh dose Co implantation into Si has been performed with a metal vapor vacuum arc (MEVVA) ion source at an extraction voltage of 70 kV to doses from 8×1016 to 6×1017 ions cm−2 at substrate temperatures (Ts) in the range of 210°C to 700°C. Annealing was performed in nitrogen at various temperatures for various time intervals by either furnace annealing (FA) or rapid thermal annealing (RTA). The electrical properties of the CoSi2 layers formed were studied using resistivity and Hall effect measurements from 10 to 300K. We found that for all the samples prepared by MEVVA implantation, as long as a continuous CoSi2 layer was formed after annealing, a strong temperature dependence of the Hall coefficient was observed with a large peak at around 90 to 110K. The magnitude of the peak also varies depending on the substrate parameters and processing conditions. However, the temperature dependence of the resistivity for these CoSi2 layers follows the atthiessen's rule. We also found that it does not require high substrate temperature nor very high temperature annealing in order to form a CoSi2 layers with low resistivity by MEVVA implantation. Such low resistivity CoSi2 layers can be formed with a substrate temperature as low as 210°C after either RTA at high temperature for a few seconds or FA at a relatively low temperature of 750°C for one hour. The dependence of the electrical properties on Ts is also presented and discussed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3