Author:
Fujii K.,Tung R. T.,Eaglesham D. J.,Kikuta K.,Kikkawa T.
Abstract
AbstractThe reaction between sputtered Ti thin films and heavily arsenic doped Si(100) is studied. The use of an arsenic implantation to pre-amorphize the Si substrate and the choice of the substrate temperature during Ti sputtering are both found to have a significant effect on subsequent TiSi2 reactions. Cross-sectional transmission electron microscopy reveals that an amorphous TiSix layer is formed at the interface between Si and as-sputtered Ti. The thickness of this interfacial layer increases with the sputtering temperature. After rapid thermal anneals in nitrogen, the sheet resistances of TiSi2 thin films grown with the pre-amorphization step and a high sputtering temperature (450°C) are generally lower than films processed under other conditions. This apparent reduction in the temperature for the polymorphic C49 to 54 phase transformation in TiSi2 is shown to originate from a higher nucleation density of the C54-TiSi2 phase. These dependencies of the silicide reaction are ascribed to the interfacial amorphous TiSix layer. In increasing the nucleation density of the C54-TiSi2 phase, the amorphous TiSix layer is speculated to either act as a direct nucleation source for the C54-TiSi2 phase, or lead to more defective C49-TiSi2 structures which facilitate the C54-TiSi2 nucleation.
Publisher
Springer Science and Business Media LLC
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献