Modelling Glass Dissolution in Clay with Analytic and Stochastic Methods

Author:

Aertsens Marc

Abstract

ABSTRACTWe present a stochastic method to model the dissolution of nuclear glass. Using this method, we solve the diffusion equation in a stochastic way. We do this by giving a large number of particles Brownian displacements. Simultaneously, these particles can participate in other processes, like a chemical reaction or convection.We apply this method to solve the Pescatore model for the dissolution of nuclear glass in clay. This model combines diffusion of silica in the pore water of the clay with the glass dissolution rate law proposed by Grambow. We use the model for fitting the dissolution data of four glasses in clay slurries (with a high and with a low clay content) and in pure clay. We present the values of the fitting parameters. The solution of the model, obtained by the simulation method, agrees with the analytical solution. We also extend the Pescatore model with a moving boundary, taking into account the receding of the glass surface by corrosion.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3