A Mathematical Model for Advective Release from Perforated Waste Package Container Under Dripping Water

Author:

Lee Joon H.

Abstract

ABSTRACTA defense-in-depth engineered barrier system (EBS) is employed in the current design concept for the potential high-level nuclear waste repository at Yucca Mountain, Nevada, USA. Simplifying the geometry of the cylindrical waste container into the equivalent spherical configuration, and incorporating detailed analysis of the mechanics of water flow around the waste container surface, a mathematical model is developed for advective release from a “failed” (or perforated) waste container under dripping water. It is shown that the advective release rates are controlled by diffusion through the perforations in the waste container, and affected insignificantly by the dripping flow rate for the flow rate range considered. The release rates depend strongly on the number of perforations (or pit penetrations) in the waste container. The insensitivity of the release rate to the dripping flow rate is explained by the fact that radionuclide is released from the container surface to the boundary layer of the water film which contacts the container surface and is relatively stagnant. Also, since a laminar flow around the waste container surface is assumed in the model development, radionuclides transport across the water layers in the film by diffusion only. Additionally, the insignificant effect of the flow rate is contributed by the “short” penetration depth of radionuclide into the water film assumed in the model development. The analyses show that the number of perforations, the size of perforation, the container wall thickness, and the geometry (i.e., radius) of the waste container are important parameters that control the advective release rate. It is emphasized that the “failed” (or perforated) waste package container can still perform as a potentially important barrier to radionuclide release.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference14 articles.

1. 3. Lee J.H. , Chambré P.L. , and Andrews R.W. , Proc. 1996 Int'l Conf. Deep Geological Disposal of Radioactive Waste, p. 5:61 (1996).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3