Terahertz Beams: Generation and Spectroscopy

Author:

Ralph Stephen E.,Grischkowsky D.

Abstract

ABSTRACTTeraHertz beams of ultrafast pulses of far infrared (λ=40–1000μm, v = 0.3x1012− 7.5×1012Hz) radiation generated via the induced dipole of photogenerated charge within a strong electric field in semiconductors are an emerging spectroscopic technique which incorporates ultrafast optical pulse generation, optoelectronics, and far infrared techniques. Recent results obtained using the trap enhanced field (TEF)[1] effect in the generation of THz beams demonstrate the extended frequency range of these sources and show their importance to time resolved infrared spectroscopy.The generation of collimated THz radiation within semi-insulating materials is dramatically improved by the extremely large field enhancement near the anode of an electrically biased metal/semi-insulator/metal structure. Our experimental results for semiinsulating GaAs establish an operational regime in which the applied potential is confined to a small region near the anode resulting from a space charge region which exists due to a dramatic change in the number of ionized EL2 traps. The effect, contrary to that observed in trap free or doped materials, is enhanced by optical injection of carriers near the anode, and can be exploited for the efficient generation of ultrafast THz radiation.Spectroscopy using THz beams allows both the static and dynamic properties, including refractive index, absorption, and photoconductivity, of materials and structures to be accurately measured. The energy range and time resolution of freely propagating subpsec THz pulses have not been previously available.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3