Hierarchical Structures in Liquid Crystalline Polymers

Author:

Sawyer Linda C.,Jaffe Michael

Abstract

AbstractIt is well known that the structure of highly oriented liquid crystalline polymers (LCPs) can be characterized by a hierarchical fibrillar structural model. Structure models were developed for the lyotropic aramid fibers and the thermotropic aromatic copolyester fibers during the last two decades showing the existence of fibrillar hierarchies. Hierarchies of structure have also been commonly observed for the biological materials. Concepts learned from the latter are useful in materials science studies today. The nature of the smallest nanostructure that aggregates, the combination of these small structures, typically microfibrils, into larger structures and the interaction of these hierarchical entities are important to understanding their behavior. The architecture of the whole of the polymer or the biological material is a further important variable as is the relation of the process with that architecture. This paper discusses details of the structure of LCPs and draws an analogy between the materials science and biological hierarchies.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference30 articles.

1. 15. Sawyer L.C. , Musselman I.H. , Chen R.T. , Jamieson M. and Russell P.E. , J. Mater. Sci., submitted.

2. 14. Sawyer L.C. , Chen R.T. , Jamieson M. , Musselman I.H. and Russell P.E. , J. Mater. Sci. Lett. (1992) in press.

3. Hierarchical structure in a thermotropic liquid-crystalline copolyester

4. Strength of fibers from wholly aromatic polyesters

5. Nuclear magnetic resonance studies of highly oriented liquid crystalline copolyesters

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Polymer Liquid Crystals and Their Blends;Physical Properties of Polymers Handbook;2007

2. High Performance Polymer Fibers;Materials Science and Technology;2006-09-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3