On the Measurement of Creep by Nanoindentation with Continuous Stiffness Techniques

Author:

Rar Andrei,Sohn Sangjoon,Oliver Warren C.,Goldsby David L.,Tullis Terry E.,Pharr George M.

Abstract

ABSTRACTMeasurement of material creep parameters by means of nanoindentation using continuous stiffness techniques avoids the problems associated with thermal drift that often plague creep measurements based on the time dependence of the indentation depth alone [1, 2]. Problems with thermal drift are negligible from a practical point of view during continuous stiffness measurements because the contact stiffness can be measured over a short time period, typically less than one second, during which time the displacements due to thermal drift are minimal. Determination of the time dependence of the indentation depth from the stiffness data relies on the well-known relation between contact stiffness and the square root of the contact area. For pyramidal indenters, the true indentation contact depth must be proportional to the contact stiffness, leading to the assumption that indentation depth is also proportional to the contact stiffness. In this study, we critically examine this assumption using data obtained from experiments on a relatively soft material, epoxy, and a relatively hard material, fused quartz. The results show that just after initial load application, the change in contact area may be different than that expected from the change in indentation depth. One possible explanation for the observed behavior is examined by finite element modeling.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3