Author:
Ullersma E. H. C.,Inia D. K.,Habraken F.H.P.M.,Van Sark W.G.J.H.M.,Van Der Weg W. F.,Westerduin K. T.,Van Veen A.
Abstract
ABSTRACTWe used Fourier Transform Infra-Red (FTIR) analysis of bi-layers of plasma-grown hy-drogenated amorphous silicon-carbide films to investigate the role of the material structure in the hydrogen diffusion process. In the bi-layers one layer was deposited using CH4/SiH4 and in the other layer CD4/SiD4 was applied. The carbon concentration was 20 at.%. In previous work we showed, using Elastic Recoil Detection (ERD) and Thermal Desorption Spectrometry (TDS), that the hydrogen moves molecular through these films in the temperature range 325 < T < 450 °C [1]. Using FTIR we obtained information about the number of Si-H and Si-D bonds and their change upon annealing. The FTIR data indicate a structural change during annealing. A comparison with the TDS spectra led us to the conclusion that at higher temperatures the out-diffusion of hydrogen stops because of the hindrance of the molecular transport.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献