An AFM Study of The Effect of Growth Method and Conditions on The Microstructure of A-Si:H

Author:

Kwon Daewon,David Cohen J.,Garcia Ricardo

Abstract

ABSTRACTWe utilized atomic force microscopy (AFM) to investigate the microstructure at the surface of thick (>4000 Å) hydrogenated amorphous silicon films. The films were prepared by standard glow discharge (GD) as well as hot wire chemical vapor deposition (HWCVD) techniques. We studied a series of films with substrate temperatures ranging between 200 °C and 400 °C. We also studied the effects of various gas mixtures at fixed growth temperature on the observed microstructure. We found that the average feature grain size in the micro structure varied between 40 nm and 90 nm as the substrate temperature was changed and also as the different gas mixtures were employed during growth. The grain size decreased with increasing substrate temperatures for the films grown from 100 % silane independent of whether the growth method were GD or HWCVD. Gas dilution with argon or hydrogen also resulted in a size reduction, as did PH3 doping at dilute levels. These results rule out the possibilities that the observed features arise from particle production in the reactor chamber itself. The relation of the observed micro structure to the electronic properties of a-Si:H is discussed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3