Search for Explaining the Staebler-Wronski Effect

Author:

Fritzsche H.,Az Tucson

Abstract

ABSTRACTFor twenty years we searched to understand the Staebler-Wronski effect (SWE). New results continue to emerge which invalidate prior interpretations. Recent evidence shows that the SWE is not associated with impurities. Long-range hydrogen diffusion is ruled out because the SWE occurs with comparable efficiency between 400K and the lowest temperatures. Nonradiative geminate recombinations might be important since high fields reduce the SWE significantly. It disappears when the bandgap or the photon energy falls below a critical value. The creation of a metastable density of dangling bond defects has been considered to be its sole manifestation. However, there is mounting evidence for light-induced structural changes which extend throughout the material. The weak bond breaking model emerges as the only viable explanation of the SWE if the expected spatial correlation between defects and hydrogen is destroyed by subsequent recombination events. The SWE is reduced by a favorable microstructure and low hydrogen content. It is suggested that defect pairs have larger recombination coefficients than isolated defects.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3