Monte-Carlo Simulation of Generation- Recombination Noise in Amorphous Semiconductors

Author:

Badran R.I.,Main C.,Reynolds S.

Abstract

AbstractWe compare the predictions of several analytical models for conductivity fluctuations in a homogeneous semiconductor containing discrete and distributed traps, using a Monte-Carlo simulation of the relevant multi – trapping (MT) transitions. The simulation directly embodies the statistical features associated with such processes, in a simple ‘model - independent’ approach, free of approximations and assumptions. We compare the results with those of several analytical approaches. In one, the noise spectrum is assumed to reflect separately, the characteristic individual release time constants of the various trapping centers in the material. In another, the trapping time into the ensemble of electron traps is taken to be the dominant time constant, and hence, in a material such as a-Si:H, where the trapping time into tail sates is of order 1ps, this is taken to imply that this component of the conductivity noise spectrum is unobservable in practice. Our own analytical approach, incorporates coupling (albeit weak) between traps, which necessarily communicate via the extended states. Preliminary results of the simulation support our thesis, and verify that the same information is contained in the real part of the modulated photoconductivity (MPC) spectrum. A ‘full Monte’ – Carlo simulation incorporating all gap states and spatial inhomogeneities is now a priority.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference7 articles.

1. Generation–recombination noise studied in hydrogenated amorphous silicon

2. Current noise in vitreous semiconductors

3. 4. Johansen R. E. , Gunes M. and Kasap S.O. in Materials for Information Technology in the New Millenium edited by Marshall J.M. , Petrov A.G. , Vavrek A. , Nesheva D. , Dimova-Malinovska D. , Maud J.M. (Published by the Editors 2001) 118–125

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3