A New Type of Dislocation Mechanism in Ultrathin Copper Films

Author:

Balk T. John,Dehm Gerhard,Arzt Eduard

Abstract

ABSTRACTIn this study of thin film plasticity, the relationship between thermomechanical behavior and dislocation motion has been investigated in copper constrained by a silicon substrate. The stress-temperature behavior as determined from wafer curvature experiments has been directly compared to deformation microstructures observed during in situ thermal cycling of plan-view specimens in the transmission electron microscope. The flow stress of copper films with thicknesses ranging from 100 nm to 400 nm was found to be constant, indicating that strengthening mechanisms may be saturated in this thickness regime. Moreover, unexpected dislocation glide on a plane parallel to the film surface, which should experience no resolved shear stress, provides potential evidence for the occurrence of constrained diffusional creep in a 270 nm film.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. In Situ Deformation Experiments: Technical Aspects;Encyclopedia of Materials: Science and Technology;2006

2. Measurement of Stresses in Thin Films and Their Relaxation;Diffusion Processes in Advanced Technological Materials;2005

3. Hierarchical multi-scale modelling of plasticity of submicron thin metal films;Modelling and Simulation in Materials Science and Engineering;2004-06-12

4. Influence of Macro- and Nanotopography, Thin Film Thermomechanical Behavior and Process Parameters on the Stability of Thermocompression Bonding.;MRS Proceedings;2004

5. Small-scale plasticity in thin Cu and Al films;Microelectronic Engineering;2003-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3