Microporous Silica and Zeolite Membranes for Hydrogen Purification

Author:

Verweij Henk,Lin Y.S.,Dong Junhang

Abstract

AbstractMicroporous amorphous silica and zeolite membranes are made as thin films on a multilayer porous support. The membranes have a network of connected micropores with ∼0.5–nm diameters. Net transport of small molecules on this network occurs under the driving force of a gradient in chemical potential. Favorable combinations of sorption selectivity and diffusion mobility in the membrane materials lead to high H2fluxes and good selectivity with respect to other gases. The membranes show potential for application in H2separation under harsh conditions. Amorphous silica membranes show very high H2fluxes because they can be made very thin; silicalite-type zeolite membranes are expected to have a better operational stability. To make the membranes a viable option, improvements are needed in reducing membrane defects and manufacturing costs and enhancing reproducibility and operational stability. This article summarizes the state of the art, provides relevant definitions, and outlines the base design and long-term specifications of viable supported membrane structures. This is followed by an overview of transport properties, synthesis, and operational stability of the membrane and the supporting structures. Directions for future research programs are provided by demonstrating how the selection of the actual membrane composition and supporting structure can be derived from an application-based design. The success of such a design depends critically on fundamental studies of membrane transport, strength, and operational stability.

Publisher

Springer Science and Business Media LLC

Subject

Physical and Theoretical Chemistry,Condensed Matter Physics,General Materials Science

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3