Fe3O4 Ultrafine Particles with Narrow Size Distribution from Polymer-Metal Complex Gels

Author:

Huang Cheng,Yang C. Z.,Chen L.

Abstract

ABSTRACTAlthough studies on the Fe3O4 magnetic particle formation have been markedly advanced by the strenuous efforts of numerous researchers, the preparation and formation of ultrafine Fe3O4 particles with narrow size distribution still remain as an open area due to their broad applications, especially in biomedical fields such as target drug delivery and medical imaging. A new method for the titled template-mediated synthesis of Fe3O4 ultrafine magnetite particles (several tens of nanometers) with narrow size distribution from a polymer matrix has been investigated. Hydrazine hydrate was used as a reducing agent to prepare the poly(itaconic acid-co-acrylic acid) gel-supported iron metallic nanoclusters, which served as nuclei, and were later transferred into ultrafine iron oxide powders in NaOH base solution. The morphology, particle size, structure and magnetic properties, as well as the formation of the particles with narrow size distribution, were investigated by means of transmission electron microscopy, selected area electron diffraction, laser light scattering, wide-angle X-ray diffraction, Fourier-transform infrared spectroscopy, and electron spectroscopy for chemical analysis, as well as magnetic measurements, respectively. It was revealed that the Fe3O4 ultrafine particles prepared from the Fe3+-poly(itaconic acid-co-acrylic acid) complex gel system kept narrow size distribution, which originated from the oxidation and aggregation growth of the primary particles, and the metallic iron nanoclusters would act as “templates” in the later magnetite particles growth stage. This new attempt of template-mineralization of Fe3O4 ultrafine particles in our preparation was proved to be effective for preparing template-mediated ultrafine magnetite particles with narrow size distribution quickly, which could also be used to prepare other kinds of inorganic particles.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3