Estimation of Illitization Rate of Smectite from the Thermal History of Murakami Deposit, Japan

Author:

Kamei G.,Arai T.,Yusa Y.,Sasaki N.,Sakuramoto Y.

Abstract

ABSTRACTThe research on illitization of smectite in the natural environment affords information on the long-term durability of bentonite which is the candidate for buffer material.Murakaml bentonite deposit in central Japan, where the bentonite and rhyolitic intrusive rock were distributed, was surveyed and the lateral variation of smectite to illite in the aureole of the rhyolite was studied.The radiometric ages of some minerals from the intrusive rock and the clay deposit were determined. Comparison of the mineral ages ( obtained by K-Ar, Rb-Sr and fission-track methods ) with closure temperature estimated for the various isotopic systems allowed the thermal history of the area. The age of the intrusion was 7.1± 0.5 Ma(; Mega d'annees), and the cooling rate of the intrusive rock was estimated to be approximately 45 °C/Ma.Sedimentation ages of the clay bed were mostly within the range from 18 to 14 Ma. However, the fission-track age of zircon in the clay containing illite/smectite mixed layers was 6.4±0.4 Ma, which was close to that of the intrusion. The latter value could be explained as the result of annealing of fission-tracks in zircon. The presence of annealing phenomena and the estimated cooling rate concluded that illitization had occured in the period of 3.4 Ma at least under the temperature range from above 240±50 to 105 °C. Illite-smectite mixed layers occured from smectite in the process. The proportion of iliite was about 40 %. Approximately, 29 kcal/mol as a value of activation energy was calculated to the illitization.The hydrogen isotopic ratio ( D/H ) of constitution water of the illite was determined. The values that were calculated for the water, which was related to the illitization, fell within the range of hydrogen isotopic ratios of seawater.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3