Prediction of Radioactive Waste Glass Durability by the Hydration Thermodynamic Model: Application to Saturated Repository Environments

Author:

Jantzen Carol M.,Ramsey W. Gene

Abstract

ABSTRACTThe effects of groundwater chemistry on glass durability were examined using the hydration thermodynamic model. The relative durabilities of SiO2, obsidian, basalt, nuclear waste glasses, medieval window glasses, and a frit glass were determined in tuffaceous (J–13) groundwater, basaltic (GR–4) groundwater, WIPP–A brine, and Permian Basin brine (PBB–3) using the monolithic MCC–I durability test. In the groundwater–dominated MCC–l experiments, the interaction of the glasses and the initial groundwater (leachant) caused the formation of unique assemblages of secondary phases. The secondary phase formation, in turn, controlled the final groundwater (leachate) pH and ionic strength, I[t].Correlations of the final leachate pH and I[t] with the Si release from the glass indicated that it is the influence of the secondary phase formation on the leachate pH and I[t] that controls the final dissolution rate of the glass. Since I[t] and the pH of the leachates are functions of the precipitation reactions, inclusion of the experimentally determined solution pH in the free energy of hydration model provides for the functional dependence of the dissolution rate on the secondary precipitation. Therefore, superposition of the linear equation for the groundwater and deionized water experiments occurs and the hydration free energy model can be used to compare glass durability in deionized water and in repository groundwaters.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference40 articles.

1. Chemical kinetics of water-rock interactions

2. 36. Phillips S.L. , Hale F.V. , and Siegel M.D. , LBL-25296 (1988).

3. 32. Mendel J.E. (compiler), U.S. DOE Report DOE/TIC-11400 (1981).

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3