A New Local Electronic Stopping Model for the Monte Carlo Simulation of Arsenic Ion Implantation into (100) Single-Crystal Silicon

Author:

Yang S.-H.,Morris S.,Tian S.,Parab K.,Tasch A. F.,Echenique P. M.,Capaz R.,Joannopoulos J.

Abstract

ABSTRACTIn this paper is reported the development and implementation of a new local electronic stopping model for arsenic ion implantation into single-crystal silicon. Monte Carlo binary collision (MCBC) models are appropriate for studying channeling effects since it is possible to include the crystal structure in the simulators. One major inadequacy of existing MCBC codes is that the electronic stopping of implanted ions is not accurately and physically accounted for, although it is absolutely necessary for predicting the channeling tails of the profiles. In order to address this need, we have developed a new electronic stopping power model using a directionally dependent electronic density (to account for valence bonding) and an electronic stopping power based on the density functional approach. This new model has been implemented in the MCBC code, UT-MARLOWE The predictions of UT-MARLOWE with this new model are in very good agreement with experimentally-measured secondary ion mass spectroscopy (SIMS) profiles for both on-axis and off-axis arsenic implants in the energy range of 15-180 keV.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Front-end process modeling in silicon;The European Physical Journal B;2009-11-07

2. Improved binary collision approximation ion implant simulators;Journal of Applied Physics;2002-01-15

3. Low-energy random and channeled H ion ranges in Si: Measurements, simulation, and interpretation;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;1998-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3