The Application of High Energy Density Transducer Materials to Smart Systems

Author:

Lindberg J. F.

Abstract

ABSTRACTRecent NUWC research efforts in the field of high power sonar transducers designed to produce high acoustic outputs over significant bandwidths while being of minimal size and weight have been aided by advances in the continuing development of several new high energy density transducer drive materials. Both Terfenol-D, a rare earth magnetostrictive material, and lead magnesium niobate, a relaxor ferroelectric, have demonstrated a tenfold increase in field-limited energy density over a typical very hard lead zirconate titanate (i.e., Clevite PZT-8) piezoelectric ceramic. The Center's focus is to double the demonstrated performance of each material and to address such issues as hysteresis reduction in the magnetostrictive material and coupling coefficient improvements in the electrostrictive materials. Poly (vinylidene fluoride-trifluoroethylene) can also be considered a high energy density material because of its excellent energy density and its broad bandwidth possibilities. The application of these material technologies, either separately or as hybrid composites, to smart material design will be detailed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference26 articles.

1. 26. Lindberg J.F. , U.S. Patent #5,530,683, “Steerable Acoustic Transducer”, 25 June 1996 and U.S. Patent #5,511,043, “Multiple Frequency Steerable Acoustic Transducer”, 23 April 1996

2. Unidirectional magnetostrictive/piezoelectric hybrid transducer

3. 23. Butler J.L. , and Clark A.E. , U.S. Patent Number 4,443,731 (April 1984).

4. 20. Merchant H.C. , “Underwater Transducer Apparatus,” U.S. Patent Number 3,258,738 (June 1966)

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-performance magnetostrictive composites with large particles volume fraction;Journal of Alloys and Compounds;2019-10

2. Transducer Characteristics;Modern Acoustics and Signal Processing;2016

3. Electroacoustic Transduction;Modern Acoustics and Signal Processing;2016

4. Transducer figure of merit (L);The Journal of the Acoustical Society of America;2012-10

5. Transducers as Projectors;Transducers and Arrays for Underwater Sound;2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3