Abstract
ABSTRACTAmorphous silicon thin film transistors have been fabricated with a number of different structures and materials. To date, the best performance is obtained with amorphous silicon - silicon nitride thin film transistors in the inverted staggered electrode structure, where the gate insulator and semiconductor are deposited sequentially by plasma enhanced chemical vapour deposition in the same growth apparatus.Localised electron states in the amorphous silicon are crucial in determining transistor performance. Conduction band states (Si-Si antibonding σ*) are broadened and localised in the amorphous network, and their energy distribution determines the field effect mobility. The silicon dangling bond defect is the most important deep localised state and their density determines the prethreshold current and hence the threshold voltage. The density of states is influenced by the gate insulator interface and there is probably a decreasing density of states away from this interface. The silicon dangling bond defect in the bulk amorphous silicon nitride also leads to a localised gap state, which is responsible for the observed threshold voltage instability.Other key material properties include the fixed charge densities associated with primary passivating layers placed on top of the amorphous silicon. The low value of the bulk density of states in the amorphous silicon layer increases the sensitivity of device characteristics to charge at the top interface.
Publisher
Springer Science and Business Media LLC
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献