The Influence of the Bonding Structure on Disorder and Band-Tails in a-B:H

Author:

Bernhard N.,Eberhardt K.,Schubert M. B.,Bauer G. H.

Abstract

ABSTRACTA thorough investigation of plasma-CVD amorphous hydrogenated boron (a-B:H) has been conducted with the main emphasis on how in this amorphous semiconductor the variation of the coordination number in comparison to a-Si:H influences the structural disorder and density of states in the band tails. a-B:H was deposited from different concentrations of B2 H6 diluted in H2 by both DC- and RF-plasma-CVD. The influence of the change of substrate temperature, pressure, flow and deposition power on the structural, optical and electronic properties of the material was examined. Raman-scattering and IR-absorption reveal the clear non-crystallinity of the deposited films. Almost all samples show some photoconductivity with a σphoto/σdark ratio from 10-1 to 3×101. Although a strong influence of some of the deposition parameters on bandgap and refractive index, hydrogen content, dark and photoconductivity was observed, the density of states in the band tails as measured by PDS was relatively high, showing always a rather flat Urbach slope of about 180 – 220 meV. An explanation for this unexpected almost uniform huge Urbach slope might be that even in the amorphous state the behaviour of boron is still dominated by its electron deficiency character which leads to a certain amount of three centre bonds (as seen in IR-absorption) and results in comparison to amorphous hydrogenated silicon in even stronger constraints of the amorphous network and obviously in more potential fluctuations.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3