Author:
Redfield David,Bube Richard H.
Abstract
ABSTRACTLThe introduction of several new principles into the analysis of transition kinetics of metastable defects in a-Si:H has produced substantially improved rate equation for the density of defects as functions of time, light intensity, and temperature. The solution of this equation is stretched exponential (SE) having properties that explain in unifying way many observations of defect properties, including generation and anneal of the defect density in homogeneous films and degradation and anneal of solar cells. Major consequences are found for both the steady-state and transient properties of the defect density and for interpretations of microscopic models of the defects. These properties are also shown to be analogous to those of metastable centers in other materials, particularly the metastable DX center in AlGaAs which offers rare insight into the microscopic origins of stretched exponentials that can be applied to a-Si:H in ways that provide new perspectives on effects of alloying and hydrogen on stability.
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献