Abstract
A buildup of radiation-induced lattice defects is proposed as the cause for lattice instability that can give rise to a crystalline-to-amorphous transition. An analysis of published experiments on intermetallic compounds suggests that, when amorphization takes place, no microstructural evolution based on the aggregation of like-point defects occurs. This observation leads us to suggest that buildup of a different type of defect, which will destabilize the crystal, should occur. We thus propose that an interstitial and a vacancy may form a complex, giving rise to a relaxed configuration exhibiting a sort of short-range order. Two mechanisms of complex formation are analyzed, one diffusionless (limited by the point defect production rate) and the other temperature dependent. The amorphization kinetics as a function of temperature, dose, and point defect sink strength are studied. Theoretical predictions on the amorphization dose as a function of temperature are made for the equiatomic TiNi alloy and compared with available experimental results.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献