Effects of low-energy electron bombardment on the surface chemical structure and adhesive properties of polytetrafluoroethylene (PTFE)

Author:

Kelber J.A.,Rogers J.W.,Ward S.J.

Abstract

The x-ray photoemission studies of polytetrafluoroethylene (PTFE) bombarded by lowenergy electrons in ultra-high vacuum conditions indicate that the major chemical changes induced by electron bombardment are defluorination of the surface and cross-linking of the polymer chains. The same electron bombardment process, when performed in the presence of 1×10−6 Torr ND3, also results in the adsorption of nitrogen-containing groups at the surface. The rate of nitrogen adsorption is linear for short electron bombardment times while the rates of defluorination and cross-linking are roughly exponential. However, at long bombardment times, the rates of nitrogen uptake, defluorination, and cross-linking become zero at the same time, indicating that defluorination of the surface is the rate-determining step in electron beam-induced adsorption of nitrogen-containing species. Regardless of whether the bombardment is carried out in ultra-high vacuum or in the presence of ND3, the maximum modification depth is less than 30 Å. Pull tests performed on PTFE samples bombarded by electrons in ultra-high vacuum, then removed into air and bonded to epoxy show epoxy-PTFE joint strengths of 280–360 1b/in.2 (psi), are compared to zero psi for untreated PTFE and ≃2000 psi for cohesive failure within the PTFE layer.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3