Theoretical Model And Computer Simulation Results Of Enhanced Diffusion Of High-Temperature Implanted Aluminum In Silicon Carbide

Author:

Gadiyak G. V.

Abstract

AbstractWide applications of silicon carbide (SiC) films in microelectronics devices make especially important predictions of the doping profiles during and/or after thermal treatment. A macroscopic kinetic model of enhanced diffusion of aluminum in SiC films during ion bombardment at high temperatures has been considered. The set of equations describing the kinetic model takes into account generation Vc and Csi vacancies during bombardment, migration of mobile species (Al) toward the surface and reactions of Al atoms with Vc and Vsi vacancies, as well as Al evolution from the film. The calculations were carried out for the flux of Al ions with energy 40 keV and current density 20 μA/cm2 to a dose 2 1016 cm−2 at 1800° C. The calculations have shown that the Al content in SiC at these condition does not exceed 40%. The calculation profile of Al is in a good agreement with experimental data [1].

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference3 articles.

1. High-temperature boron and phosphorus ion implantation in silicon

2. 1. Suvorov A.V. , Usov I.O. , Sokolov V.V. , and Suvorova A.A. ‘Enhanced diffusion of high-temperature implanted aluminum in silicon carbide.” MRS-95 Fall Meeting, Boston, MA USA (in press).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3