Author:
Dodson Brian W.,Taylor Paul A.
Abstract
The interaction of a low-energy silicon beam with a silicon substrate has been simulated. The combined effects of vibrational lattice excitation and of covalent binding have been included for the first time by using a molecular dynamics technique and an empirical potential that accurately describes the covalent Si–Si interactions. A 10 eV silicon beam was directed normal to a silicon (111) substrate. Sticking ratio, penetration depth, substrate structure, and vibrational excitation of the substrate are quantitatively determined. The special features of such low-energy beam deposition relative to thermal deposition processes are discussed.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献