Metal site disorder in zinc tin phosphide

Author:

Ryan M. A.,Peterson Mark W.,Williamson D. L.,Frey James S.,Maciel Gary E.,Parkinson B. A.

Abstract

The optoelectronic properties of the II-IV-V2 semiconductor ZnSnP2 are studied as a function of the cooling rate of the crystal growth melt. The structure of the material, as studied by x-ray diffraction, is seen to change from chalcopyrite to sphalerite as the cooling rate is increased. Photoelectrochemical measurements show that the bandgap of the material decreases from 1.64 eV for the chalcopyrite to 1.25 eV as the structure approaches sphalerite. The 119Sn Mössbauer spectroscopy shows both an isomer shift and a broadening of the 119Sn resonance as a result of new tin environments produced by disordering of zinc and tin sites at the faster cooling rates. The 31P solid-state nuclear magnetic resonance spectroscopy clearly shows new resonances associated with the additional phosphorus environments produced by metal site disordering. A model based on zinc and tin site exchange with the introduction of compensating donor and acceptor states is proposed and discussed.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3