Growth and Characterization of InSb films on Si (001)

Author:

Tran Lien,Dobbert Julia,Hatami Fariba,Masselink W. Ted

Abstract

ABSTRACTThe replacement of native oxides with deposited oxides in CMOS technology opens the door to replacing the Si with semiconductors without high-quality native oxides. For example, the use of InSb in logic applications could allow much lower operating voltages and power dissipation due to the InSb channels reaching saturation at significantly lower electric fields. Epitaxy of InSb onto Si could be done directly or using an intermediate layer such as GaP, GaAs, or InP. In the current work we describe the growth of InSb on Si (001) and discuss the structural and electrical properties of the resulting InSb films. The samples were characterized in terms of background electron concentration, mobility, deep level traps, Hall sensitivity, and x-ray rocking curve width.Samples were grown using molecular-beam epitaxy in a Riber-Compact 21T system. Antimony was supplied with a Veeco valved cracker cell. Vicinal Si(001) substrates offcut by 4º toward [110] were prepared by repeated oxidation and oxide-removal and then loaded into the MBE system. After the substrate temperature had been increased to about 820ºC, the surface shows a clear 24 reconstruction and appears to be free of oxide. This reconstruction remains until the substrate temperature reaches 1015ºC, at which temperature a 21 appears, indicating a dominance of double-height steps. After allowing the substrate to cool to the intended growth temperature for InSb, it is exposed to cracked Sb, resulting in the surface going from 21 to 11. This 11 reconstruction remains throughout the subsequent InSb deposition. InSb was deposited with a Sb/In flux ratio of about 5 and a growth rate of 0.2 nm/s. We have investigated growth temperatures between 300 and 420ºC for growth. To prevent the formation of the defects we introduced in some samples GaSb/AlSb supperlattice buffer layer. The best structural quality has been achieved at a growth temperature of 420ºC using GaSb/AlSb supperlattice buffer layer, resulting in our best electron mobility of 2.6104 cm2/Vs for a 2m film at room temperature. The samples grown at 420°C have the narrowest x-ray rocking curve width (FWHM of about 950 arcsec). Deep level noise spectra indicate the existence of the deep levels. The sample with the best crystal quality and highest mobility has the lowest traps. The deep levels have a temperature dependent behavior.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference14 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3