Low Temperature Synthesis of Nanocrystalline Silicon and Silicon Oxide Films by Plasma Chemical Vapor Deposition

Author:

Tomyo Atsushi,Kaki Hirokazu,Takahashi Eiji,Hayashi Tsukasa,Ogata Kiyoshi,Uraoka Yukiharu

Abstract

ABSTRACTNanocrystalline silicon (nc-Si) and SiO2 films have been synthesized at a low substrate temperature using inductively coupled plasma chemical vapor deposition (ICP-CVD) methods with internal low-inductance antenna (LIA) units. The synthesis of these materials was performed in the separate vacuum containers where LIA units were installed so that the induced electric field from an antenna could be used effectively. Radio frequency (13.56 MHz) power was supplied through the matching circuit units. H2 and SiH4 gases were used for nc-Si synthesis, and O2 and SiH4 gases were used for SiO2 deposition. The gas flow ratios were 15 for H2/SiH4 and 4.0 for O2/SiH4. A substrate temperature, gas pressure, RF power and process time were varied in order to investigate optimum conditions for nc-Si synthesis. Silicon oxide films were deposited under conditions of 300°C, 0.2 Pa and 24 mW/cm3. A sample was prepared by SiO2 deposition and subsequent nc-Si synthesis after removing the natural oxide on silicon substrate by buffered 1%-HF (BHF) solution. In some cases, plasma treatments were inserted before or after nc-Si synthesis. The diameter and number density of nc-Si were determined by a high-resolution transmission electron microscopy (HR-TEM). Plan-view TEM images of nc-Si showed that spatially isolated nc-Si was synthesized and that the diameter and the standard deviation of nc-Si could be controlled not only with a substrate temperature, gas pressure, RF power and process time but also with pre/post plasma treatments. The resultant trend suggests that radical precursors and reactive nucleation sites on the SiO2 surface have an important role in the synthesis of nc-Si. The diameter of almost all nc-Si under the present conditions was less than 10 nm. In particular, under conditions of the substrate temperature of 200°C and 4.0 Pa with oxygen plasma pretreatment and hydrogen plasma posttreatment, the mean diameter and number density of nc-Si were 2.7 ± 0.5 nm and 6.5 × 1011 cm−2, respectively. This result is suitable for quantum effect device applications. In addition, electronic properties of a single SiO2 film were examined with the fabricated metal oxide semiconductor (MOS) capacitor. Breakdown voltage was 7.5 MV/cm at 1.0 × 10−6 A/cm2 and leakage current was 1.0 × 10−9 A/cm2 at 2.0 MV/cm for a SiO2 film with a thickness of 12 nm. This result clearly supports the present SiO2 film is capable of the thin dielectric layer of nc-Si devices.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3