Micromechanical Characterization of Gasb by Microbeam Deflecion and Using Nanoprobe and Finite Element Analysis

Author:

Ospina M.,Vangala S. R.,Yang D.,Sherwood J. A.,Sung C.,Goodhue W. D.

Abstract

ABSTRACTThe commercial development of low-power electronics and electro-optics based on antimonides demands a better understanding of the mechanical properties of ternary and quaternary thin-film alloys fabricated from the InGaAlAsSbP material system. Of particular importance is the determination of Young's modulus of these materials. In this paper, a technique for studying the mechanical behavior of these thin films was developed by using microbeam bending and finite element modeling. The technique was successfully applied to investigate the mechanical properties of GaSb. A test structure consisting of an array of gallium antimonide microbeams was fabricated with lengths ranging from 50 to 500 μm long. The microbeams were deflected using a calibrated nanoprobe, thereby generating load-displacement curves. Young's modulus was then extracted from the data using beam bending theory and a finite element simulation of the structures under load. A total of five microbeams with the same trapezoidal cross-section and lengths of 80, 85, 200, 250 and 500 μm were tested to study the technique applicability and size scaling effects on the mechanical properties. It was observed that the 80 and 85 μm beams exhibited linear elastic behavior and the 200, 250, and 500 μm microbeams exhibited non-linear elastic behavior.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference3 articles.

1. [3] Senturia S.D. , Microsystems Design. Kluwer Academic Publishers. 2001.

2. Fabrication of Nanotips and Microbeams in Antimonide Based Semiconductor Material using Bromine Ion Beam Assisted Etching;Krejca;MRS Symposium Proceedings vol.,2004

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3