Physical-Chemical Considerations for Semiconductor Room-Temperature Radiation Detectors

Author:

Schieber M.,Hermon H.,Roth M.

Abstract

ABSTRACTPhysical properties of large band gap semiconductors such as: HgI2, CdTe, Cd0.8Zn0.2Te, CdSe, Cd0.7Zn0.3Se, GaAs, PbI2 and TlBr are briefly reviewed and discussed in terms of their use as room temperature operating x-ray and gamma ray radiation detectors. It is shown that HgI2 which has the largest drift length for holes, λ=μτE i.e., the product of the mobility μh, life time τh and the electrical field E, is at present the leading material, being followed by the newly developed Cd0.8Zn0.2Te. Chemical defects in HgI2 were enhanced by doping the material with aliphatic, aromatic and oxyhydrocarbons as well as with excess Hg and I2 and the increase in unit cell parameter was studied as a function of the amount of dopant. The value of τ was measured as a function of dopant concentration and it was found that Hg doping causes the most severe trapping defects. Low temperature studies of τh down to 170K allowed the identification of the trapping energy levels and concentration of electrically active defects. Shallow traps of 0.13-0.18 eV stemming from deviation from stoichiometry of H-gI2 were found to be in the ppm level whereas deeper traps of 0.4-0.5 eV stemming from hydrocarbons were found to be in the ppb level. It is concluded that only extensive research on the physical, chemical and structural defects correlated with improved crystal growth and device fabrication methods, would lead, in the future, to improvements in λh also of the other large Eg semiconductor detector materials.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mercuric iodide for room temperature radiation detectors. Synthesis, purification, crystal growth and defect formation;Materials Science and Engineering: R: Reports;1997-02-01

2. Formation of PdHg by reaction of palladium thin film contacts deposited onto mercuric iodide (α-HgI2) radiation detector crystals;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;1996-10

3. Electrodrift purification of mercuric iodide for improved gamma-ray detector performance;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;1996-10

4. The effect of elemental and hydrocarbon impurities on mercuric iodide gamma ray detector performance;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;1996-10

5. Study of trapping levels in doped HgI2 radiation detectors;Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment;1996-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3