Nature of High Critical Current Density in Epitaxial Films of HTS YBCO Cuprate and Coated Conductors

Author:

Pan Vladimir M.,Cherpak Yuriy V.,Pashitskii Ernst A.,Semenov Aleksey V.

Abstract

ABSTRACTCurrently a problem of crystal defects nanoengineering for pinning enhancement is extensively studied. A number of efforts were done to realize nanodot-like and particulate-dispersive pins to enhance pinning and critical current density in high-Tc cuprate films and coating. Sometimes some effect of Jc enhancement was achieved. However it is important to comprehend mechanisms of such an enhancement. It is known the ensemble of random point-like pins with size ro of order of coherence length, xab(T), can provide Jc(77 K) not to exceed 5§¹104 A/cm2. Estimations give the maximum pinning force of about for linear extended defects (if ). Here eo is the characteristic vortex energy. A model of vortex pinning and supercurrent limitation is developed and discussed on the base of measurements and analysis of magnetic feld and angle dependencies of Jc(H,¦È) in epitaxial c-oriented YBa2Cu3O7-δ (YBCO) films measured by the four-probe transport current technique, low-frequency ac magnetic susceptibility and SQUID magnetometry. Films nanostructure is studied by SEM, TEM, HREM and X-ray diffractometry. Rows of growth-induced out-of-plane edge dislocations (EDs), forming low angle subboundaries (LABs), are shown to play a key role in achievement of the highest critical current density Jc ¡Ý 2 106 A/cm2 at 77 K. The model takes into account the transparency of LABs for supercurrent as well as the pinning of vortex lattice on a network of LABs. Films defect structure parameters, such as a domain size distribution and a mean misorientation angle, are extracted from Jc(H||c)-curves as well as from X-ray diffraction data. Evolution of angle dependencies Jc(¦È) with H is shown to be consistent with the model, supposing dominant pinning on EDs. Strongly pinned vortices parallel to the c-axis exist in strongly tilted magnetic felds up to threshold feld Hp. Below Hp the magnetic induction within a film obeys a simple relation B = Hcos¦È. This feature is shown to explain the absence of the maximum in Jc(¦È)-plot, expecting at H||c in low applied feld. A peak-effect in Jc(H||ab)-dependencies and an angular hysteresis of Jc(¦È) observed in intermediate feld range, are discussed in terms of film thickness, surface quality and orientation of the applied feld. The effects observed are found to be consistent with the developed model. To our mind any nano-, micro- and macro-interfaces, emerging within films or coatings at the deposition process (e.g., nanodot-like and particulate dispersive inclusions) being coherently connected with a YBCO-matrix serve as a source of formation of a multitude of additional dislocations and as a result can promote the essential Jc-enhancement.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3