Synthesis and Properties of Lead Selenide Nanocrystal Solids

Author:

Chen Feng,Stokes Kevin L.,Zhou Weilie,Fang Jiye,Murray Christopher B.

Abstract

ABSTRACTWe present results of our investigation of the synthesis, structural properties and electrical transport properties of lead selenide (PbSe) nanoparticle-derived solids. Stable colloidal solutions containing crystalline PbSe particles with sizes on the order of 5-10 nm were synthesized using an organometallic lyothermal growth method in high-temperature organic solvents (100∼200 °C). The nanoparticle powders have been characterized by X-ray scattering (WAXS/SAXS), electron microscopy and optical absorption. Thin lms were formed by controlled precipitation of the nanoparticles from solution onto insulating substrates. Electrical resistance (R) and Seebeck coecient (S) for conductive PbSe lms from dierent annealing conditions were studied and compared. We were able to obtain conductive PbSe lms from colloids by low temperature annealing which did not disturb the nanoparticle self-assembly.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3