Structural and Optical Properties of the Thermally Stable Amorphous Si1−xBx Alloy.

Author:

Carlsson Johan R. A.,Li X.H.,Gong S.F.,Hentzell H.T.G.

Abstract

Thin amorphous Si1−xBx films were co-evaporated onto pre-oxidized (100) Si wafers and quartz substrates, by using a high vacuum system with 2 electron guns. Films were deposited in a composition range from x=0 to x=0.5. In order to study how the structural and optical properties depended on concentration and annealing temperature, heat treatments were carried out at temperatures from 400 up to 1000°C. The films were characterized by means of transmission electron microscopy (TEM), Auger electron spectroscopy (AES), and light absorption spectrophotometry. It is shown that the amorphous Si1−xBx alloy is stable up to 1000°C at certain compositions and that the optical band gap of the alloy increases gradually with increasing annealing temperature up to 700 - 900°C, and then increases rapidly when annealed at a higher temperature by about 0.5 eV. These changes can be associated with microstructural alterations. The relationship between the microstructure and the band gap of the films is discussed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3