Phenomena And Mechanism On Phase Transformation Twinning In Nanocrystalline BaTiO3

Author:

Mazumder Sujata,Ghosh Jiten

Abstract

AbstractThe detailed structure of nanocrystalline BaTiO3 powder during ball milling has been studied using XRD & TEM. The study illustrates important advances in understanding atomic scale properties of this material. Ferroelectric BaTiO3 powder undergoes phase transformation along the sequence Cubic(Pm3m)-tetragonal(P4mm)-orthohombic (Amm2)-rhombohedral(R3m) structure when pressureless sintered samples are cooled from high temperature to low temperature. The high to low symmetry phases are not related to group subgroup symmetry as transformation is discontinuous and first order in nature and the twin relationship in the low symmetry is forbidden by Landau theory. In case of ball milled BaTiO3 powder a continuous and diffusionless phase transition occur via second order to and from a metastable intermediate phase. In this pathway crystallites in the aggregation are twinned and the twin structure is related to crystal point group m3m which in the present case is illustrated as having 6mm symmetry formed under low driving force. The unit cell evolution due to phase transition and the crystallographic relationship are established. The phase transformation, coalescence and twin structure of thermally annealed BaTiO3 nanocrystals under high vacuum has been investigated using in situ high temperature XRD. The structure analysis is performed with the use of the method of computer modelling of disorder structure and simulation of corresponding diffraction pattern.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3