A New SiGeC Vertical MOSFET: Single-device CMOS (SD-CMOS)

Author:

Augusto Carlos J.,Forester Lynn

Abstract

AbstractA new type of silicon-based Vertical MOSFET concept is presented - Single-Device CMOS (SD-CMOS) - in which the same structure can be operated as NFET or as PFET, depending on the biasing conditions [1]. SD-CMOS offers new possibilities for CMOS integration schemes that are simpler - requiring only 5 masks for the “Front- End” - and less costly to manufacture, than any integration scheme requiring the fabrication of two devices with opposite polarities.In epitaxially grown Vertical MOSFETs, the source, channel and drain can have atomically sharp interfaces, well controlled doping, and channel length controlled by the epitaxial process rather than by lithography and ion-implantation. With epitaxial growth, it is straightforward to do bandgap engineering by incorporating films such as Si1-xGex, and/or Si1-yCy and/or Si1-x-yGexCy, into any of the aforementioned regions. Suitable band offsets at the source/channel interface [2] can suppress DIBL, which is a key limitation to CMOS scaling. These advantages of Vertical MOSFETs are crucial for future CMOS technology nodes, such as 22nm and below.SD-CMOS has a metallic drain region with work-function close to the mid-gap energy of the channel material, which can be a homogenous material, a random alloy, or a superlattice. The source region has a very narrow bandgap, achievable with (Si1-yCy)m-(Si1-xGex)n superlattices, whose mid-gap level is aligned with that of the channel region, and with band offsets with the channel region that are nearly symmetric for the conduction and valence bands. The source contact is a metal with a work-function close to the mid-gap level of the source and channel regions, which in turn are aligned with the work-function of the drain. The potential barrier, for electrons and holes from the source contact to the source region, is required to be just a few KT. For operation as NMOS and PMOS with nearly symmetric threshold voltages, the work-function of the gate electrode is also aligned with the mid-gap energy level of the channel.SD-CMOS is unique due to its band alignments: symmetric band edges, from source to drain, with respect to the mid-gap energy (the “mirror” line). Such configuration can only be obtained in the absence of doping, which if present would immediately break that symmetry. The conduction and valence band edges are required to be asymmetric with respect to a cross-section line crossing the channel through the middle of the gate.The conduction (valence) band offset between source and channel sets the barrier height for electrons (holes) in the OFF condition for NMOS (PMOS), while applying a voltage at the gate leads to the accumulation of electrons (holes) at the source/channel interface, thereby pushing the Fermi-Level in the source above (below) the conduction (valence) band edge of the channel for the ON condition. Band diagrams and a CMOS fabrication flow for SD-CMOS will be presented. [1] US Patent 6,674,099 [2] US Patent 5,914,504

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3