The Origin of Radiation Resistance of Magnesium Aluminate Spinel

Author:

Gritsyna Vasyl T.,Kazarinov Yurij G.,Kobyakov Volodymyr A.,Sickafus Kurt E.

Abstract

ABSTRACTWe propose here a new mechanism to explain the observed high radiation tolerance of magnesium aluminate compounds with crystal structures known as spinel. By using optical methods, we found that the kinetics of accumulation of optical absorption centers under different types of irradiation, as well as the kinetics of absorption decay after termination of irradiation, along with radio-luminescence processes, are consistent with a new model regarding defects and radiation damage in spinel. This model assumes the existence of spatially-correlated antisite defects in the form of dipoles: (Al3+tet)+-(Mg2+oct)-. These spatially-correlated point defect complexes serve as centers for annihilation of radiation-induced cation Frenkel pairs. In addition to the spatially-correlated defects, the high concentration of cation structural vacancies inherent to the spinel lattice also serves to promote high mobility of both Mg and Al interstitial species. This enhanced mobility leads to increased probability of annihilation at the dipole centers proposed in this model. Such annihilation then diminishes the probability for formation of defect clusters, dislocation loops, or amorphization of the irrradiated spinel.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference10 articles.

1. 5. Gritsyna V.T. , Afanasye-Charkin I.V. , Yu.G. Kazarinov and Sickafus K.E. , in REI-12, Nucl. Instrum. and Methods in Phys. Res. B (2003) in press.

2. Why is magnesia spinel a radiation-resistant material?

3. Dipole defects in MgAl2O4spinel crystals

4. Structure and Electronic States of Defects in Spinel of Different Compositions MgO·nAl2O3:Me

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3