Defect Reduction and Defect Engineering in Silicon-on-Sapphire Material Using Ge Implantation

Author:

Namavar F.,Cortesi E.,Kalkhoran N. M.,Manke J. M.,Buchanan B. L.

Abstract

AbstractSubstantial reduction of defect density in silicon-on-sapphire (SOS) material is required to broaden its range of applications to include CMOS and bipolar devices. In recent years, solid phase epitaxy and regrowth (SPEAR) and double solid phase epitaxy (DSPE) processes were applied to SOS to reduce the density of defects in the silicon. These methods result in improved carrier mobilities, but also in increased leakage current, even before irradiation. In a radiation environment, this material has a large increase in radiation induced back channel leakage current as compared to standard wafers. In other words, the radiation hardness quality of the SOS declines when the crystalline quality of the Si near the sapphire interface is improved.In this paper, we will demonstrate that Ge implantation, rather than Si implantation normally employed in DSPE and SPEAR processes, is an efficient and more effective way to reduce the density of defects near the surface silicon region without improving the Si/sapphire interface region. Ge implantation may be used to engineer defects in the Si/sapphire interface region to eliminate back channel leakage problems.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference26 articles.

1. Comparison of electrical defects in Ge+and Si+preamorphized BF2‐implanted silicon

2. 17. Cullen G.W. and Duffy M.T. , IEEE SOS/SOI Technology Workshop, 6–8 October 1987, Durango, CO.

3. 7. Gupta A. and Vasudev P.L. , Solid State Technology, 104, (1983).

4. 20. Crowder et al., Appl. Phys. Lett. (1970).

5. 15. Brandewie J. , IEEE SOS/SOI Technology Workshop, 6–8 October 1987, Durango, CO.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3