Spinning deposition of silica and silica-titania optical coatings: A round robin test

Author:

Guglielmi M.,Martucci A.,Almeida R. M.,Vasconcelos H. C.,Yeatman E. M.,Dawnay E. J. C.,Fardad M. A.

Abstract

A round robin test has been performed on sol-gel processing for the deposition of silica and silica-titania films on silicon substrates by spin-coating. Three solution preparation processes for silica coatings and three for silica-titania coatings were used to prepare samples at each of the participating laboratories. The films have been characterized mainly by thickness (profilometry and ellipsometry measurements), refractive index, porosity, and optical scattering. Different processes gave different thicknesses. Thickness differences were found in films prepared by the same process and by the same deposition parameters, but in different laboratories, when heat-treated at 500 °C. Variations were reduced in samples annealed at 1000 °C. Refractive index and porosity measurements suggest that variations were due to structural differences, particularly porosity. Furthermore, films heat-treated at 500 °C were not completely stabilized, and showed index and porosity variations after six months.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optical spectroscopy methods for the characterization of sol–gel materials;Journal of Sol-Gel Science and Technology;2021-08-26

2. Silicon dioxide thin films prepared by spin coating for the application of solar cells;International Advanced Researches and Engineering Journal;2021-04-15

3. Characterization of Sol-Gel Materials by Infrared Spectroscopy;Handbook of Sol-Gel Science and Technology;2018

4. Characterization of Sol–Gel Materials by Infrared Spectroscopy;Handbook of Sol-Gel Science and Technology;2016

5. Influence of the synthesis route on sol–gel SiO2–TiO2 (1:1) xerogels and powders;Ceramics International;2008-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3