Raman Scattering Study of Coalesced Single Walled Carbon Nanotubes

Author:

Fang S. L.,Rao A. M.,Eklund P. C.,Nikolaev P.,Rinzler A. G.,Smalley R. E.

Abstract

High temperature heat treatment of single wall carbon nanotube bundles in flowing H2 was used to produce a significant fraction (∼40%) of diameter-doubled, or coalesced tubes with a mean diameter corresponding to that of ∼(20, 20) tubes. At three laser excitation wavelengths (514.5, 647, and 1064 nm), a reduction in the Raman scattering intensity of the strong radial and tangential modes was observed in the H2-treated sample, consistent with the reduced fraction of tubes in the sample after coalescence. However, using 488 nm excitation, little or no change is observed in the Raman spectrum after the H2 treatment, suggesting that this excitation wavelength couples only to chiral symmetry tubes. Using the 647 nm excitation, the effect of H2 treatment on the tangential band is quite unique, and a significant change in the shape of the tangential band was observed. Our lineshape analysis, and other results reported in this issue, suggest that this unique change of shape is due to lost scattering intensity from metallic tubes partially compensated by tangential mode scattering from the coalesced tubes. The normally prominent radial breathing mode band, which would be expected at ∼90 cm−1 for ∼(20, 20) tubes was not observed, indicating that these larger diameter tubes do not exhibit strong resonant scattering, at least at any of the wavelengths used in this study.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 157 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3