Author:
Sheng H. W.,Zhou F.,.Hu Z. Q,Lu K.
Abstract
Two nonequilibrium processes (melt-spinning and ball-milling) were successfully employed to synthesize Al1−xPbx (x = 5, 10, 20, 30 wt. %) nanocomposites with distinct microstructures. In the melt-spun (MS) Al–Pb alloys, the nanometer-sized Pb particles are uniformly distributed in the micrometer-grained Al matrix and have an orientational relationship with the matrix, while in the ball-milled (BM) samples, both Pb and Al components are refined with prolonged milling time, forming nanocomposites with Pb particles homogeneously dispersed into the Al matrix. The minimum particle size of Pb in the milled samples linearly increases with the Pb content. The microhardness of the BM Al–Pb samples is much larger than that of the MS samples, which mainly results from strengthening effects of the nanometer scale Al grains following the Hall–Petch relationship. The microhardness for both BM and MS Al–Pb samples varies with the Pb content, and maximum hardness for both samples exists when Pb content is about 5 wt. %, indicating that small amounts of Pb, in the form of nanoparticles, may strengthen the Al matrix.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献