Abstract
ZrO2 nanopowders derived from zirconium n-propoxide [Zr(OC3H7)4]-acetylacetone-water-isopropanol have been investigated with respect to their tetragonal metastability on heating-cooling processes. The transformation temperature of metastable tetragonal to monoclinic (t′ → m) phase is found to be governed by ultimate firing temperature, time, and atmospheres employed. Crystallite growth is fastened with increase in calcination temperatures over 1000–1400 °C, and the t′ → m transformation temperature is correlated linearly with crystallite size in the studied range of 12–20 nm. Heating in an oxygen environment increases the size of the final crystallites and hence the rate of the t′ → m transformation. It is revealed that the t′ → m transformation temperature depends largely on the heating atmosphere, but only weakly on the cooling one. Based on the findings of this work, surface oxygen deficiencies are attributed to be responsible for low-temperature tetragonal metastability. A crystallite growth model to explain the decline of t′-ZrO2phase is proposed. Kinetic and thermodynamic factors are also discussed in connection with the existing theories of tetragonal metastability.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献