Grain Growth Simulation of [001] Textured YBCO Films Grown on (001) Substrates with Large Lattice Misfit: Prediction of Misorientations of the Remaining Boundaries

Author:

Rodriguez Julio C.,Ling S.,Tsap J.,Chan Siu-Wai

Abstract

AbstractWe employed a Monte Carlo technique to simulate the effect of (1) the anisotropic grain boundary energy in the film and (2) the large misfit between the film and substrate on the grain growth of [001] textured Yba2Cu3Ov7-x (YBCO) films. In terms of remaining grain boundaries of certain misorientations, the simulation results concur with the experimental observation of preferred grain orientations of YBCO on various substrates, such as (001) MgO and (001) Yttria stabilized Zirconia (YSZ). Three factors were identified to influence the grain growth of these [001] tilt boundaries in the simulation and could help to elucidate the origin of special misorientations observed experimentally. These are (1) the depth of local minima in boundary energy vs. misorientation curve, (2) the number of possible combinations of coincidence epitaxy (CE) orientations contributing to the exact misorientation for each of the high angle but low energy (HABLE) boundaries, and (3) the number of possible combinations of coincidence epitaxy CE orientations within the angular ranges near each of the HABLE boundaries.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3