Enhancement of Zirconolite Dissolution Due to Water Radiolysis

Author:

Toulhoat Nelly,Toulhoat Nelly,Moncoffre Nathalie,Toulhoat Pierre,Jegou Christophe,Corbel Catherine,Bardez Isabelle,Leturcq Gilles

Abstract

AbstractZirconolite is a candidate host material for conditioning minor tri- and tetra-valent actinides arising from enhanced nuclear spent fuel reprocessing and partitioning, in the case of disposal of the nuclear waste. Its chemical durability has been studied here under charged particle-induced radiolysis (He2+ and proton external beams) to identify the possible effects of water radiolysis on the dissolution rates in pure water and to describe the alteration mechanisms. Two experimental geometries have been used in order to evaluate the influence of the following parameters: solid irradiation, water radiolysis. In the first geometry the beam gets through the sample before stopping at the surface/water interface. In the second one the beam stops before the surface/water interface. Results on the elemental releases due to the enhanced dissolution of the zirconolite surface during charged particle-induced irradiation of water are presented. Under radiolysis, an increase of one order of magnitude is observed in the Ti, Zr and Nd elemental releases. No difference in the total elemental releases can be noticed when the solid is also irradiated.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of leaching solutions on chemical durability of a natural metamict titanite;Journal of Nuclear Science and Technology;2020-02-09

2. Leaching Behavior and Mechanism of Ceramic Waste Forms;Journal of Inorganic Materials;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3